LOGARİTMAI. ÜSTEL FONKSİYONLAR VE LOGARİTMİK FONKSİYONLAR
2
y = 2
4 eşitliğini sağlayan y değerini bulmak için yapılan işleme üslü denklemi çözme denir. (y = 4)
Buraya kadar anlatılan bilgiler 6
a = 10 eşitliğini sağlayan a değerini bulmak için yeterli değildir. Bu eşitliği sağlayan a değerini bulmak için yapılan işleme logaritma alma denir.
A. ÜSTEL FONKSİYONLAR
olmak üzere,
biçiminde tanımlanan fonksiyona üstel fonksiyon adı verilir.
a > 0 olduğundan f(x) = a
x > 0 olur.
B. LOGARİTMA FONKSİYONU
olmak üzere,
biçiminde tanımlanan üstel fonksiyonun ters fonksiyonuna logaritma fonksiyonu denir.
şeklinde gösterilir. Buna göre,
dir.
y = log
ax ifadesinde
sayısına
sayısının a tabanına göre logaritması denir ve ‘‘y eşittir a tabanına göre logaritma x ’’ şeklinde okunur.
C. LOGARİTMA FONKSİYONUNUN ÖZELLİKLERİ
Kural1 den farklı her a pozitif reel sayısının a tabanına göre logaritması 1 dir. Buna göre,
|
KuralHer tabana göre, 1 in logaritması 0 dır. Buna göre,
|
KuralKuralKuralKuralD. ONLUK LOGARİTMA FONKSİYONU
f(x) = log
ax fonksiyonunda taban a = 10 alınırsa f(x) fonksiyonuna onluk logaritma fonksiyonu denir ve kısaca logx biçiminde gösterilir.
1 den büyük sayıların on tabanına göre logaritması pozitiftir.
1 den küçük pozitif sayıların on tabanına göre logaritması negatiftir.
Kural x > 1 olmak üzere, x in onluk logaritmasının tam kısmı, x in basamak sayısının bir eksiğine eşittir.
0 < y < 1 olmak üzere, y nin ondalık kesir biçiminde yazılışında, sıfırdan farklı ilk rakamın solundaki sıfır sayısı K ise, logy nin eşitinin tam kısmı –(K – 1) dir. |
E. DOĞAL LOGARİTMA FONKSİYONU
f(x) = log
ax fonksiyonunda taban
ℓ = 2,718281828459045235360287471352… alınırsa (ℓ sayısı irrasyonel bir sayı olup yaklaşık değeri 2,718 kabul edilir.) doğal logaritma fonksiyonu elde edilir. Doğal logaritma fonksiyonu kısaca lnx biçiminde gösterilir. Bu durumda,
İşlemlerde genellikle log
ex yerine lnx ifadesi kullanılır.
II. LOGARİTMALI DENKLEMLER
Özellika sayısı 1 sayısından farklı bir pozitif sayı olmak üzere, tabanı a olan logaritmalı denklem,
logaf(x) = b ise f(x) = ab dir. logaf(x) = logag(x) ise f(x) = g(x) dir. Logaritmalı denklemleri bu özellikleri kullanarak çözeriz. Logaritmanın tanımından, f(x) > 0 ve g(x) > 0 olmalıdır. |
III. LOGARİTMALI EŞİTSİZLİKLER
Kurallogaf(x) in işareti a ya bağlı olduğundan eşitsizlik çözümlerinde aşağıdaki bilgileri kullanırız.
|